

Mission Valley Power Agricultural Measures

Presented by: Richard Stroh, *Customer Service Engineer*Bonneville Power Administration

Mission Valley Power Irrigation Workshop

Agricultural

Agricultural

- Variable Frequency Drive (VFD) for centrifugal/turbine/submersible agricultural pumps (New or Existing installations).
- Agricultural pump efficiency upgrade (New pumps).
- Sprinkler irrigation hardware maintenance and conversions
- Green motors

VFD for Centrifugal Agricultural Pumps

(New or Existing Installations)

Pre-Condition:

- Pre-Approval with Mission Valley Power required prior to purchase of equipment.
- A fixed speed centrifugal pump ranging from 20 to 1000 horsepower.
- Eligible installations are limited to pumps with at least 20% variation in head.
- Pump manufacturer's performance curve if available.

Post-Condition:

- A new (not rebuilt) VFD that meets the 20% variation in head.
- BPA recommends IEEE 519 standard is met. (Electrical harmonic mitigation)
- Pump manufacturer's performance curve (if new pump is installed)
- Invoice

Rebate:

\$70/horsepower

VFD for Turbine/Submersible Agricultural Pumps

(New or Existing Installations)

Pre-Condition:

- Pre-Approval with Mission Valley Power required prior to purchase of equipment.
- A fixed speed turbine/submersible pump ranging from 20 to 1000 horsepower.
- Eligible installations are limited to pumps with at least 20% variation in flow rate or 10% variation in head.
- Pump manufacturer's performance curve

Post-Condition:

- A new (not rebuilt) VFD that meets the 20% variation in flow or 10% variation in head.
- BPA recommends IEEE 519 standard is met. (Electrical harmonic mitigation)
- Pump manufacturer's performance curve (if new pump is installed)
- Invoice

Rebate:

\$100/horsepower

Agricultural New Pump Upgrade

Pre-Condition

- Pre-Approval with Mission Valley Power required prior to purchase of equipment.
- o **Existing** submersible, centrifugal or turbine pump
- Pump ranges from 20 to 500 horsepower.

Post-Condition

- New replacement pump. New motor not required.
- New pump must be the same or lower horsepower as the existing horsepower unless a VFD is installed.
- A change from a turbine pump to a centrifugal pump or centrifugal to a turbine is allowable.

Note: Rebuilt pump or simply new impeller(s) using the existing bowls/volute does not qualify for the rebate.

Rebate Payment

\$70/hp

Sprinkler Hardware Conversion Rebates

- Pre-Condition
 - Pre-Approval with Mission Valley Power required prior to purchase of hardware.
 - Applies to both new and existing systems.
 - Pivot or Lateral Move with MESA (Rotators/I-Wobs/Orbitors/Sprays, etc.) or high pressure impact sprinklers.
 - Minimum pressure to critical sprinkler is at least 35 psi.
- Post-Condition
 - Pivot or Lateral Move with LESA / LEPA / MDI package
- Rebate Payment
 - \$18.00/drop
- Note: Wheel Line conversions to pivot do not qualify for the rebate.
 This is considered a custom project.

Sprinkler Hardware Conversion Rebates

Pre-Condition

- Pre-Approval with Mission Valley Power required prior to purchase of hardware.
- Wheel line or hand line with high pressure impact sprinklers.

Post-Condition

 Wheel line or hand line with a pressure regulator, rotating type sprinkler and new nozzle; or rotating type sprinkler with a flow control nozzle.

Rebate Payment

\$16.00/sprinkler head

Sprinkler Hardware Rebates

Pre-Condition

- Pump is served by Mission Valley Power.
- Leaky high pressure wheel lines, hand lines, pivots or lateral moves

Post-Condition

Non-leaky pivots, lateral moves, wheel lines or hand lines

Rebate Payment

Replace or rebuild impact sprinklers

Replace leaky pipe section gaskets

\$1.00/sprinkler

\$4.00/gasket

Sprinkler Hardware Rebates

- Pre-Condition
 - Pump is served by Mission Valley Power.
 - Leaky wheel lines
- Post-Condition
 - Non-leaky wheel lines
- Rebate Payment
 - Replace Thunderbird wheel line hubs
 - Replace or rebuild wheel line levelers

- \$4.00/hub
- \$1.00/leveler

Green Motors

- A service offered by Green Motor Service Centers.
- When a motor fails, an operator has three choices:
 - Rewind to a lower efficiency (typical practice).
 - Rewind and maintain the original efficiency (Green Motor).
 - Replace with a new motor.
- Typically need to request a green rewind to get one.

Green Motors

- The preferred benefit:
 - Reliability (95 percent)—all about temperature
 - For every 10° C (50° F) rise in the windings above design temperature, not 40° C (104° F) ambient, the useful life is reduced by 50 percent.
 - Longer bearing life.
 - Longer insulation life.
 - -OR-
 - Efficiency: (5 percent)
 - Anything done to a motor to reduce temperature typically increases efficiency.

Green Motors

 Local Accredited EASA (Electrical Apparatus Service Association) Service Centers:

See the Green Motors website

None in Montana

Closest is the Spokane Valley

Pumps and What Causes Them to Wear

End-Suction Centrifugal Pump

- In Agriculture, Typically
 Used as a Either the
 Primary Pump or a Booster
 Pump
- High Efficiency
- May Require Priming

Pumps and What Causes Them to Wear

Split-Case Centrifugal Pump

- In Agriculture, Typically Used Only as a Booster Pump
- High Efficiency
- Suction Head

BONNEVILLE POWER ADMINISTRATION

Pumps and What Causes Them to Wear (Continued)

Vertical Turbine Pump

- Most Versatile Pump
- In Agriculture, Can be Used as the Primary Pump or Booster Pump
- Surface Water or Deep Well Water Pumping
- Can be High Efficiency

Pumps and What Causes Them to Wear (Continued)

Causes of Pump Wear

- Grit and Sediment entrained in the water
- Cavitation
 - High suction lift
 - Plugged intake
 - Improper intake design
 - Pumping more water than designed for the pump
 - Pumping air bubbles

Pumps and What Causes Them to Wear

Pumps and What Causes Them to Wear (Continued)

A Look at Cavitation Effects

Pumps and What Causes Them to Wear

Cavitation Damage to Impeller

Pumps and What Causes Them to Wear Cavitation Example Centrifugal Pump Curve

Pumps and What Causes Them to Wear Cavitation Example Centrifugal Pump Curve

- Cavitation is dependent on the Net Positive Suction Head Available as compared to the Net Positive Suction Head Required.
- The Net Positive Suction Head Available must be greater than the Net Positive Suction Head Required.

NPSHA (ft) = 34.0 feet – Site Elevation (ft)/1000 – $V^2/2g$ – Suction Lift (ft) – Suction Friction Loss (ft)

where: V = Suction pipe flow velocity (ft/sec) g = Acceleration of gravity (32.2 ft/sec²)

Example from Pump Curve

8" Suction pipe

Operating Conditions:

Friction loss includes suction pipe and foot valve Velocity (ft/sec) = $0.408 \times GPM/Dia (in)^2$

	Condition 1	Condition 2	Condition 3
Flow Rate:	440 gpm	1000 gpm	1340 gpm
Elevation:	3500 ft	3500 ft	3500 ft
Lift:	5 ft	5 ft	5 ft
NPSHR:	7 ft	10 ft	20 ft
Velocity:	2.81 ft/sec	6.38 ft/sec	8.54 ft/sec
Friction Loss:	0.78 ft	4.02 ft	7.2 ft
NPSHA:	24.60 ft	20.85 ft	17.17 ft)

Indicates Cavitation Will Occur

Pumps and What Causes Them to Wear

Ways to Minimize Cavitation Damage:

- Reduce friction losses on the intake side of the pump
- Reduce the suction lift
- Reduce flow from pump

Low Pressure Technologies for Center Pivots and Lateral Moves

- LESA Low Elevation Spray Application
- LEPA Low Energy Precision Application
- MDI Mobile Drip Irrigation

LESA

Dragon Line
A Form of MDI

LEPA

Truss Bar Clip

Ram's Head T

Angled Hoses
Dropping
12" to 18" from
Ground

Demonstration Pivot

Installation of Soil Moisture Sensors

Demonstration Program

Installation of Soil Moisture Sensors

Demonstration Program

Installation of Soil Moisture Sensors

Demonstration Program

Setting up the Soil Moisture Loggers

Data Logger

Demonstration Program

Logger Connected to Installed Soil Moisture Sensors.

Cell Phone Transmission of Data

Recording Crop Progress

LESA 8/3/2016

Control 8/3/2016

Data

University of Idaho Extension

Installation of Netafim PMDI

Netafim PMDI

LEPA Sprinkler

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

LESA/LEPA/MDI Demonstration Conclusions

Benefits

- Water savings using LESA is about 10% while water Savings for MDI can be as high as 20%
- LESA may operate effectively using 6 psi pressure regulators.
- Reduced disease pressure in small grains.
- Higher application uniformity.
- Higher yields and crop quality*.
- Significant energy savings*.

^{*} Several factors can affect this.

LESA/MDI Drawbacks:

- Livestock and wildlife may damage drops recommend securing hoses high up on the pivot during the winter.
- High winds can tangle MDI hoses.
- LESA works best on flat terrain.
- LESA requires double to triple the number of drops compared to MESA.
- MID requires spacing between 2 and 3 feet
- Cost for a LESA package may cost between \$10,000 and \$15,000.
- Cost for a MDI package may cost between \$20,000 and \$30,000.
- Having clean water is critical.
- Runoff

Facts about Electric Induction Motors

- Unlike gasoline/diesel/propane/NG engines, induction motors are essentially constant speed.
- The shaft rotational speed (RPM) of an electric motor = 120 x Frequency (Hertz)/# Poles
- The most common induction motors used for irrigation pumps have either 2 pole or 4 pole motors –
 This equates to 3600 RPM or 1800 RPM.
- A variable frequency drive varies the input frequency to the motor, thus changing the speed.

New 500 hp well pump and VFD

Inside a VFD panel

Advantages of VFDs

- Can maintain the same pressure to the irrigation system regardless of flow.
- Can result in energy savings by not over-pressurizing system.
- Inherently provides soft start capabilities.

Disadvantages of VFDs

- Certain VFDs can generate harmonics on the power grid potentially causing electrical disturbances and interference.
- May require external cooling.
- Must be protected from dust and vermin.
- Electrical losses through the drive and possible filter.
 (Approximately 3% loss for each apparatus)

VFDs and When to Use Them **Example Centrifugal Pump Curve**

VFDs and When to Use Them **Example Turbine Pump Curve**

Example VFD Analysis

Variable Speed Analysis

Page 5. 2

Project No.: RRE-01-25

Control: Valve Control

Example VFD Analysis

(Continued)

Pump Station No.: P1 Pump No.: 1 Condition: Existing

Pump Information

 $\begin{array}{ccc} & & & & & & & & & & \\ \textbf{Pump Make:} & \textbf{Hydroflo} & & & & & & & \\ \textbf{Pump Model:} & 14 \texttt{LH} & & & & & \\ \end{array}$

 Pump Type:
 Vertical Turbine
 Impeller No:

 Rated RPM:
 1770
 Impeller Size:
 10.7850

 Drive Eff.:
 93.6%
 No. of Stages:
 5

System Curve Data Points

Condition No.		Pump Operating Conditions					
	Condition Description			nual Hours Operation			
1	Minimum Head	1,500 3	375.0	600			
2	Maximum Head	1,500 4	150.0	600			
		Totals:		1,200			

System Curve Data Points

Condition No.	Pump Conditions w/Valve Control							Pump Conditions w/VSD Control						
	TDH (ft)		Pump Eff. (%)		kW Demand	kWh Usage	RPM			Plant Eff. (%)	kW Demand	kWh Usage		
1	450.5	204.6	83.4	64.7	196.7	98,255	1,647	169.5	83.8	72.9	145.4	87,218		
2	450.6	204.6	83.4	77.6	163.9	98,222	1,768	204.3	83.4	72.0	176.6	105,972		

1.67% Savings

Variable Speed Analysis

Page 5. 2

Variable Speed Analysis

Page 5. 3

Example VFD Analysis (Continued)

Project No.: LRE0123

Pump Station No.:P1

Pump No.: 1 Condition: Proposed

Pump Information

Primary Model

Pump Make: Goulds Pump Model: 12RJLO

Impeller No:

Pump Type: Vertical Turbine Rated RPM: 1770

Impeller Size: No. of Stages:

Valve Control

Drive Eff.: 91.7%

System Curve Data Points

Condition No.		Pump Operating Conditions					
	Condition Description	Flow (gpm)	Head Annual Hou (ft) Operation				
1	All Sprinklers Operating	830	200.0	200			
2	75% of Sprinklers Operating	623	200.0	200			
3	50% of Sprinklers Operating	415	200.0	200			
4	All Sprinklers Operating	830	150.0	200			
5	75% of Sprinklers Operating	623	150.0	200			
6	50% of Sprinklers Operating	415	150.0	200			
3		Totals	:	1,200			

Project No.: LRE0123

Pump Make: Goulds

Pump Station No.:P1 Pump No.:

Condition: Proposed

Pump Information

Primary Model Pump Model: 12RJLO

Pump Type: Vertical Turbine Impeller No:

Rated RPM: 1770 Impeller Size: 7.6250 **Drive Eff.:** 91.7% No. of Stages:

Valve Control Control:

System Curve Data Points

System curve Data I omis												
		Pump C	ns w/Va	lve Cont	rol	Pump Conditions w/VSD Control						
Condition No.	TDH (ft)	Brake Hp	Pump Eff. (%)	Plant Eff. (%) I	kW Demand	kWh Usage	RPM	Brake Hp	Pump Eff. (%		kW Demand	kWh Usage
1	200.3	49.5	84.8	76.2	41.1	8,205	1,768	49.4	84.8	70.3	44.4	8,888
2	231.7	46.2	78.8	60.9	44.6	7,707	1,663	39.0	80.7	65.9	35.6	7,120
3	256.5	42.6	62.9	43.8	45.7	7,132	1,580	30.9	67.8	55.5	28.1	5,626
4	200.2	49.5	84.8	57.2	54.8	8,207	1,602	37.1	84.8	69.3	33.9	6 , 773
5	231.8	46.2	78.8	45.6	59.5	7,705	1,480	28.3	83.4	68.0	25.9	5,173
6	256.5	42.6	63.0	32.9	61.0	7,134	1,389	21.5	73.0	57.4	20.4	4,086
				To	tals:	46,090						37,666

Total Energy Savings (kWh):

8,424

18% Savings

Contacts

Bonneville Power Administration

Dick Stroh,

Mechanical Engineer

Ph: 208-612-2130

Cell: 208-589-0101

Email: rcstroh@bpa.gov

Lindsey Hobbs,

Energy Efficiency Representative

Ph: 509-822-4588

Email: lkhobbs@bpa.gov

Mission Valley Electric Coop.

Lyle Neiss

Member Services

Ph: 406-883-7900 Ext. 9

Email: neiss@missionvalleypower.org

